Test	Form	A
TOST	T OF ITT	7 1

Date

Chapter P

Class

Section _

un+#1: Functions review

1. Find all intercepts of the graph of $y = \frac{x+2}{x-3}$.

 $J = \frac{2}{3} = -\frac{2}{3}$ $\left(0, \frac{2}{3}\right)$ (c) $\left(0, \frac{2}{3}\right)$, (3, 0)

X-Int: Lety=0

(a) (-2,0)

(d) $(-2, 0), (0, -\frac{2}{3})$

(e) None of these

2. Determine if the graph of $y = \frac{x}{x^2 - 4}$ is symmetrical with respect to the x-axis, the y-axis, or the origin. LVEN 1000 per them.

(a) About the x-axis

(b) About the y-axis

(c) About the origin

(d) All of these

(e) None of these

3. Find all points of intersection of the graphs of $x^2 - 2x - y = 6$ and x - y = 6(c) (5, 9), (-2, 2)

(a) (0, -6), (0, 4)

(b) (10, 14), (13, 17)

(d) (-5, -1), (2, 6)

(e) None of these

4. Which of the following is a sketch of the graph of the function $y = x^3 + 1$?

(c)

(d)

(e) None of these

5. Find an equation for the line passing through the point (4, -1) and perpendicular to the line 2x - 3y = 3.

(a) $y = \frac{2}{3}x - 1$ (b) 3x + 2y + 2 = 0(c) 2x + 3y = 0(d) 3x + 2y = 10(e) None of these

6. Find the domain of $f(x) = \frac{1}{\sqrt{3-2x}}$ $\downarrow 0$ $3 - 2 \times > 0$ $-3 \times > 3 - 2 \times > 0$ (a) $\left(-\infty, \frac{3}{2}\right)$ (b) $\left[\frac{3}{2}, \infty\right)$ $\left[-\infty, \frac{3}{2}\right]$ (c) $\left(\frac{3}{2}, \infty\right)$

$$\left((a) \left(-\infty, \frac{3}{2} \right) \right)$$

(b)
$$\left[\frac{3}{2}, \infty\right]$$

(c)
$$\left(\frac{3}{2}, \infty\right)$$

$$\left(-\infty,\frac{3}{2}\right)$$

(d)
$$\left(-\infty, \frac{3}{2}\right) \cup \left(\frac{3}{2}, \infty\right)$$

7. Find $f(x + \Delta x)$ for $f(x) = x^3 + 1$.

(a)
$$x^3 + 1 + \Delta x$$
 $f(X + \Delta X) = (X + \Delta X)^3 + 1$ (b) $x^3 + 3x^2(\Delta x) + 3x(\Delta x)^2 + (\Delta x)^3 + 1$ (c) $x^3 + (\Delta x)^3 + 1$ (e) None of these $f(X + \Delta X) = (X + \Delta X)^3 + 1$

(c)
$$x^3 + (\Delta x)^3 + 1$$

(d)
$$\Delta^3 x^6 + 1$$

$$(X^2 + 2X\Delta X + \Delta X^2) + 1$$

 $X^{3} + 2X^{2}\Delta X + X \Delta X^{2} + X^{2}\Delta X + 2X\Delta X^{2} + \Delta X^{3} + 1$

8. If $f(x) = \frac{1}{\sqrt{x}}$ and $g(x) = 1 - x^2$, find f(g(x)).

$$\frac{2X^{2}X+X\Delta X+X\Delta X+X\Delta X^{2}+\Delta X^{3}+1}{X^{3}+3X^{2}\Delta X+3X\Delta X^{2}+\Delta X^{3}+1}$$

$$(a) \ \frac{1-x^2}{\sqrt{x}}$$

$$\sqrt{x}$$

$$(b) \frac{1}{\sqrt{1-x^2}}$$

(c)
$$1 - \frac{1}{x} f(g(x)) = f(1-x^2) = \frac{1}{\sqrt{1-x^2}}$$

(d)
$$\frac{1}{\sqrt{x}} + 1 - x^2$$

9. If the point $\left(-3, \frac{1}{2}\right)$ lies on the graph of the equation 2x + ky = -11, find the value of k. $2\left(-3\right) + K\left(\frac{1}{2}\right) = -1/2$

(a)
$$-\frac{3}{2}$$

(b)
$$-34$$

(c)
$$-\frac{17}{2}$$

$$(d) -10$$

$$\frac{-10}{10} + \frac{1}{2}K = -\frac{11}{10}$$

10. Which of the following equations expresses y as a function of x?

(a) 3y + 2z = 0(a) 3y + 2x - 9 = 17

expresses y as a function of x?

(b)
$$2x^2y + x = 4y$$

(c) $3x^2 - x^2 = 5$

$$2\frac{1}{2}K = -5$$

(b)
$$2x^2y + x = 4y$$

(e)
$$3y^2 - x^2 = 5$$

11. Given $f(x) = x^2 - 3x + 4$, find f(x + 2) - f(2).

(a)
$$x^2 - 3x + 4$$

(b)
$$x^2 + x$$

(c)
$$x^2 + x - 8 \quad \chi^2$$

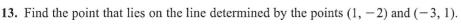
(d)
$$x^2 - 3x - 4$$

(c)
$$x^2 + x - 8$$
 $\chi^2 + \frac{1}{2} +$

Company. All rights

(a)
$$f(x) = \tan x$$

12. Determine which function is neither even nor odd.
$$3(-x)^{\frac{5}{5}} + 5(-x)^{\frac{3}{2}} + 1$$


(a) $f(x) = \tan x$

(b) $f(x) = 3x^{\frac{5}{5}} + 5x^{\frac{3}{5}} + 1$

(c) $f(x) = \sqrt{x^2 + 1}$

(c)
$$f(x) = \frac{3}{x^2}$$

(d)
$$f(x) = \sqrt{x^2 + 1}$$

$$(0,0)$$
 $(5,-5)$

(c)
$$(4, -6)$$
 $(2-2)$

(c)
$$(4, -6)$$
 $M = -2 - 1 - 3$ $(2 - 24)$ $1 + 13$ 4

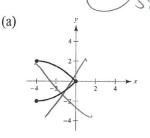
$$(d) (5, -5)$$

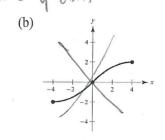
(e)
$$(-2, 0)$$

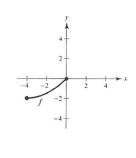
$$y = -\frac{3}{4}x - \frac{5}{4}$$

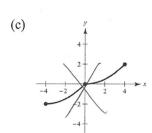
$$y = -\frac{3}{4}x - \frac{5}{4}$$

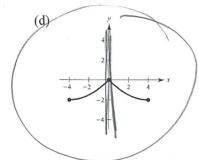
$$y = -\frac{3}{4}x + b$$

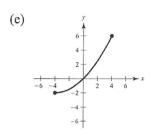

$$1 = -\frac{3}{4}(-5) + b$$


$$3x + 4y = -5$$

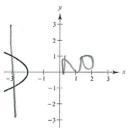

$$\frac{4}{-9} = \frac{9}{4} + b$$

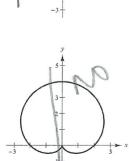

14. The domain of the function f shown in the figure is $-4 \le x \le 4$. Choose the complete graph of f if f is even.



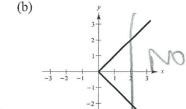


15. Describe the transformation needed to sketch the graph of $y = \frac{1}{x-2}$ using the graph of $f(x) = \frac{1}{x}$.

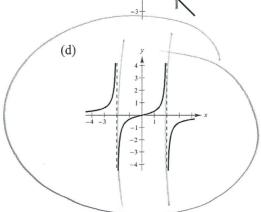



- (a) Shift f(x) two units to the right.
- (b) Shift f(x) two units to the left.
- (c) Shift f(x) two units upward.
- (d) Shift f(x) two units downward.
- (e) Reflect f(x) about the x-axis.

- 16. Use the vertical line test to determine which of the following graphs represent y as a function of x.



(a)



(e) None of these

X+2

$$f(3) = 2(3) + 1$$

- (d) Undefined

(b) 1

18. The dollar value of a product in 1998 is \$1430. The value of the product is expected to increase \$83 per year for the next 5 years. Write a linear equation that gives the dollar value V of the product in terms of the year t. (Let t = 8 represent 1998.) t = 9 1999 (t - 8) = (9 - 8) = 1

(a)
$$V = 1430 + 83(t - 8)$$

(b)
$$V = 83 + 1430t$$

(c)
$$V = 1430 + 83t$$

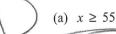
(d)
$$V = 83 + 1430(t + 8)$$

(e)
$$V = 1430 + 83(t + 8)$$

19. During the first and second quarters of the year, a business had sales of \$150,000 and \$185,000, 220,000, 2 55,000 respectively. If the growth of sales follows a linear pattern, what will sales be during the fourth quarter?

(a) \$220,000

(b) \$235,000

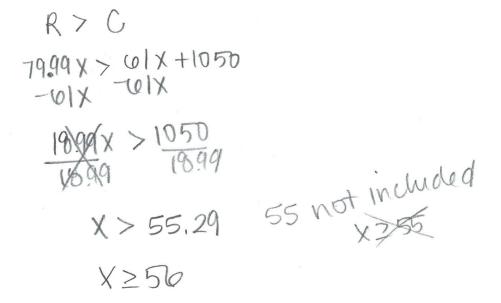

(c) \$335,000

(d) \$255,000

(e) None of these

35,000 per Quarter add

20. In order for a company to realize a profit in the manufacture and sale of a certain item, the revenue, R, for selling x items must be greater than the cost, C, of producing x items. If R = 79.99x and C = 61x + 1050, for what values of x will this product return a profit?



(b)
$$x \ge 8$$

(c)
$$x \ge 18$$

(d) $x \ge 56$

(e) None of these

© Houghton Mifflin Company. All rights reserved.